

# 

| 3  | ANÁLISE DO SOLO            |
|----|----------------------------|
| 4  | SOLOS                      |
| 7  | PREPARO DE SOLUÇÕES        |
| 12 | EXTRAÇÃO DE ELEMENTOS      |
| 14 | PROCESSO DE ANÁLISE        |
| 21 | FOLIAR                     |
| 22 | EXTRAÇÃO                   |
| 23 | DETERMINAÇÃO               |
| 24 | REFERÊNCIAS BIBLIOGRÁFICAS |

## ANÁLISE DO SOLO



Os processos de análise do solo foram iniciados por volta de 1840, período em que o homem buscou saber como as plantas crescem. A partir de então houve uma progressão até a aceitação plena como algo essencial à formulação de um programa de adubação e calagem e a compreensão de sua importância para a classificação dos diferentes tipos de solos para qualificação quanto à contaminação.



A análise química do solo é a mais utilizada pelos agricultores, por demonstrar a "saúde" do mesmo, quantidade de nutrientes e, comparado com boletins e tabelas, ficar claro quanto é necessário adubar de acordo com cada cultura. A análise física do solo também é utilizada em conjunto, mas não sempre.



Já as folhas são os órgãos da planta que melhor expressam o **estado nutricional da cultura**, pois há uma relação bem definida entre o crescimento e a produtividade da cultura com os teores nutricionais nos tecidos. A diagnose foliar é uma ferramenta muito importante para monitorar o balanço nutricional da planta ao possibilitar a correção da deficiência ocasionada, por exemplo, por falhas na adubação de base.

#### SOLOS

A análise química do solo é o primeiro passo para definição de medidas necessárias à correção e ao manejo da fertilidade. Após a coleta o solo chega ao laboratório e recebe uma identificação fixada em recipiente apropriado para secagem e posterior moagem.

A secagem pode ser feita ao ar e o solo, assim seco, passa a ter a

denominação de TFSA (Terra Fina Seca ao Ar). Como os laboratórios secam grandes quantidades de amostras de solo e precisam de rapidez é possível utilizar estufas com circulação de ar forçada à temperatura de 40°C, como a **TE-394/5** de 1.516 litros ou a **TE-394/3** (528 litros).

**TE-394/3**Estufa com cirulação e renovação de ar



**TE-394/5**Estufa com circulação de ar



#### SOLOS



Se a demanda de amostras no laboratório não for muito alta pode-se optar por estufas com circulação e renovação de ar de volumes menores, como a TE-394/2 (220 litros), TE-394/500L (500 litros, somente circulação de ar) ou TE-394/4 (1.152 litros). Existem também os modelos TE-393/80L e TE-393/180L, que podem ser utilizados na secagem e esterilização de vidrarias.

e renovação de ar



e renovação de ar

Estufa para secagem

e esterilização

TE-393/180L

e esterilização

Estufa para secagem

#### SOLOS

Após a secagem, a amostra deve ser moída com o uso de um moinho e uma peneira para obtenção de partículas de até 2 mm.

O moinho de solos tipo martelo **TE-330/1** é muito apropriado

para esse objetivo, já que é

acompanhado por um coletor

de amostra que possui tela com

malha de 2 mm em aço inox

304. Além de não contaminar

a amostra facilita e agiliza o

processo pois, após a moagem,

ela já é peneirada.



Depois de seca e moída a amostra é transferida ao laboratório, que iniciará os procedimentos para determinação dos seus nutrientes/contaminantes/constituintes. No caso de amostras de solo, usualmente as massas estão entre 0,5 g e 10 g, sendo que uma balança com duas casas decimais atende a necessidade. Os modelos **SHI-BL-3200H** e **SHI-UX-6200H** são consideradas os mais adequados para esse propósito.

**TE-330/1**Moinho de solos



**SHI-BL-3200H** Balança de precisão



**SHI-UX-6200H** Balança de precisão



Algumas metodologias consideram o volume de amostra, e não a massa, ao utilizar medidores de volume, chamados de cachimbos de solo. Esses materiais têm volume conhecido. Os cachimbos são feitos em PVC e encontrados em diversos volumes nos modelos **TE-070** (1,0 mL), **TE-070/2** (2,5 mL) com tela, **TE-070/5** (5 mL) e **TE-070/6** (10 mL).

As amostras são pesadas ou cachimbadas em bandejas de alumínio com tiras de isopor (**TE-145-C1**), que contém 30 copinhos de amostras, ou em erlenmeyers de vidro.

Para preparo de soluções e padrões de uso do laboratório nas análises de solo recomenda-se o uso de balanças analíticas ou semi-analíticas, dependendo da massa a ser pesada. Pode-se utilizar as balanças SHI-AUX-220, SHI-AUY-220 e SHI-ATX-224 – Balanças analíticas Shimadzu e as balanças SHI-BL-320H e SHI-UX-620H – Balanças semi-analíticas Shimadzu.



Para preparo das soluções indicadas anteriormente é necessário utilizar água de qualidade, que não contenha os elementos a serem determinados para não influenciar o resultado. São usados destiladores ou osmose reversa para obter a qualidade de água requerida para os ensaios.

Como destiladores, pode-se utilizar os modelos **TE-1782** e **TE-1788**, que são de vidro, o **TE-17823**, que é um bi-destilador, para uma melhor qualidade, o **TE-2755** e **TE-2801**, destiladores de água tipo Pilsen, o Osmose Reversa **TE-4007/10** e o **TE-4008** – Osmose reversa automatizada, que já contém um barrilete para armazenamento da água com sistema automático de nível, que promove o desligamento da bomba quando a bomba for atingida. A escolha do destilador depende do grau de pureza desejado. Para o armazenamento há o barrilete em PVC **BP-0301** (20 litros) e o **BP-0300** (10 litros).





**TE-1788**Destilador de água





Um dos parâmetros de avaliação da qualidade de água é a medição de sua condutividade. Para esse monitoramento há o TEC-4MP – Medidor de condutividade e o TEC-4P-MP – Medidor de condutividade portátil. Para o preparo de soluções com reagentes ácidos ou voláteis é necessário o uso de uma capela de exaustão. Existem os modelos CE-0710, CE-0720 e CE-0730 – Capela para exaustão de gases.

Após a amostra ser pesada e as soluções de uso serem preparadas é necessário que tais soluções sejam adicionadas às amostras. Este volume a ser dispensado depende do elemento quantificado, mas para todas as soluções a serem adicionadas nas bandejas de alumínio é possível utilizar o **TE-290** – Dispensador de 1 alíquota com seringa de vidro, o **TE-299** – Dispensador automático e os dispensadores Hirschmann.



**TEC-4MP**Condutivímetro
digital



**CE-0710**Capela para exaustão de gases



CE-0720 Capela para exaustão de gases

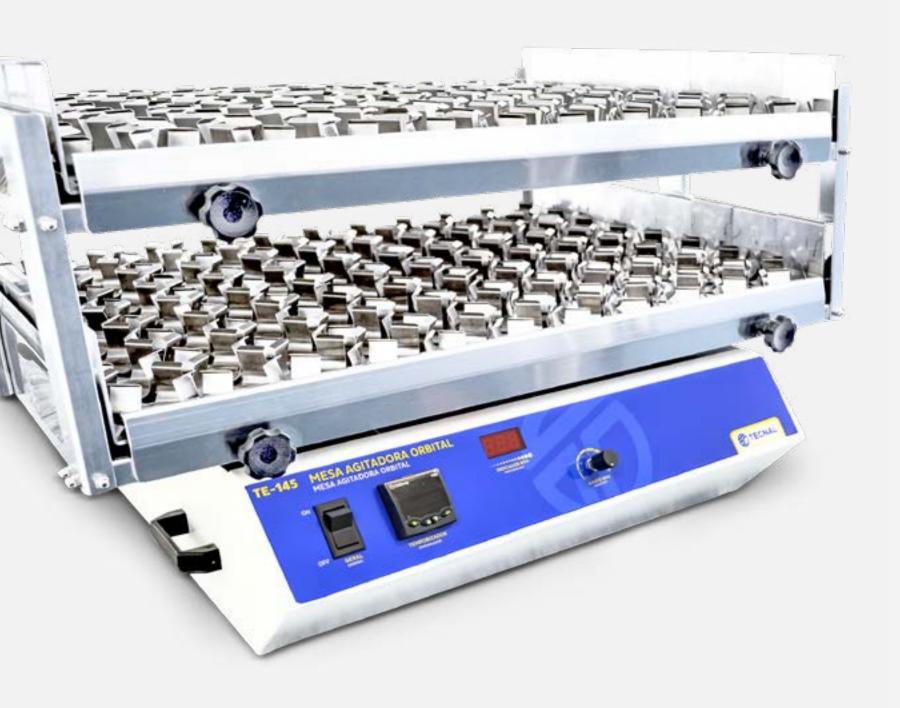


**CE-0730**Capela para exaustão de gases

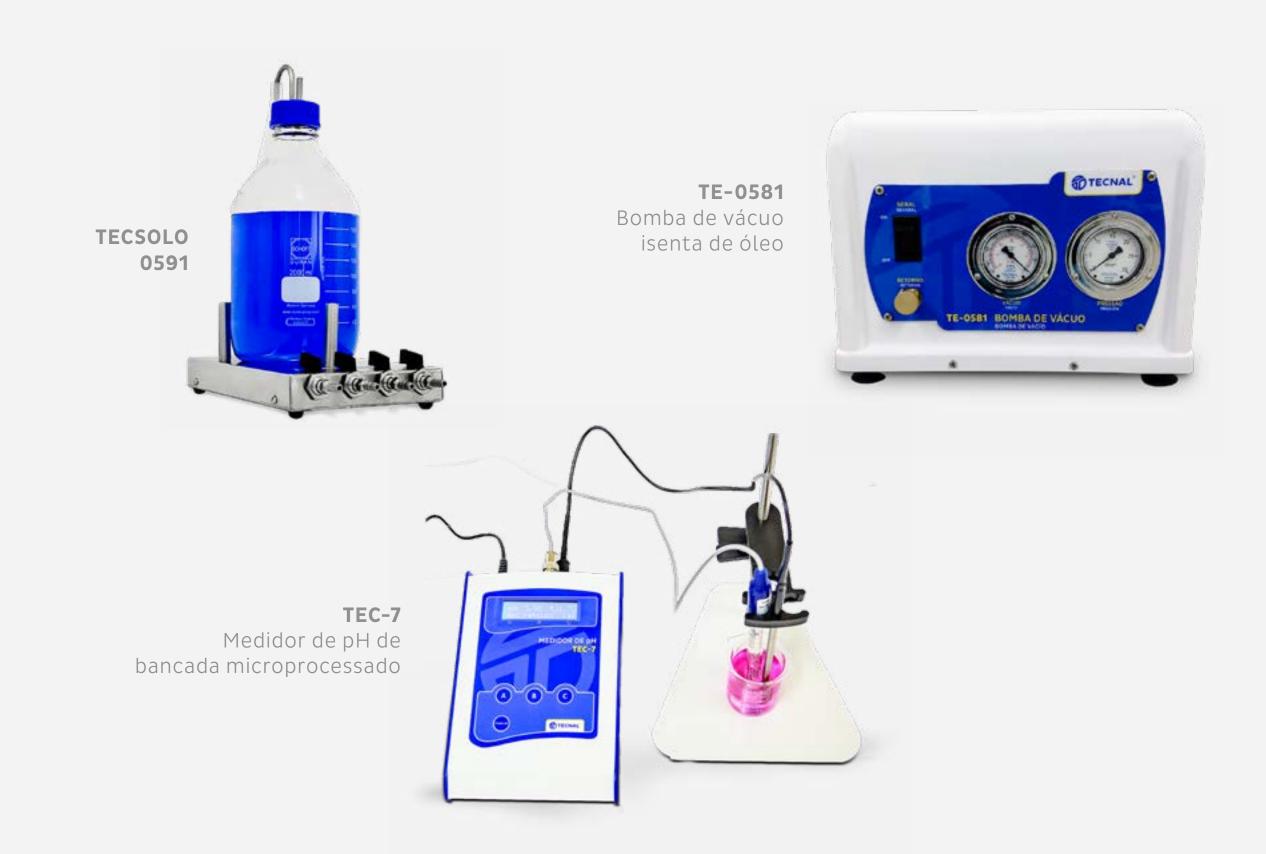


**TEC-4P-MP**Condutivímetro
microprocessado
portátil




**TE-299** Dispensador automático

Para adição de soluções nos erlenmeyers pode ser utilizado o


TECSOLO – Pipetador semi-automático) de 5, 15, 25, 50, 75 e 100

ml, juntamente com TECSOLO-0591 e o TE-0581 – Bomba a vácuo.

Esses equipamentos, operando em conjunto, levam a solução de um recipiente para os frascos de análise.



**TE-145**Mesa agitadora orbital



Quando as amostras recebem as soluções apropriadas elas necessitam de homogeneização para que ocorra a extração. Para isso, são utilizadas mesas agitadoras, como a **TE-145**.

Uma das determinações mais comuns em solos é o pH, sendo necessário o uso de um pHmetro, que pode ser o **TEC-7** – Medidor de pH de bancada microprocessado.

# EXTRAÇÃO DE ELEMENTOS

Para extração de alguns elementos, pode ser utilizada a metodologia da resina trocadora de íons. Entre os equipamentos requeridos está o TE-310/1 – Lavador de resinas, utilizado para separar a resina do solo e adicioná-la na solução extratora para posterior determinação dos elementos. Após o uso, as resinas devem ser recuperadas para que possam ser utilizadas novamente. Usa-se o TE-308/2 – Recuperador de resinas.

Existe também o método de com extrator Mehlich 1, que é amplamente utilizado em laboratórios. É possível utilizar os mesmos equipamentos já citados, como balanças ou cachimbos, bandejas, mesas agitadoras e dispensadores.



**TE-310/1**Separador de resinas



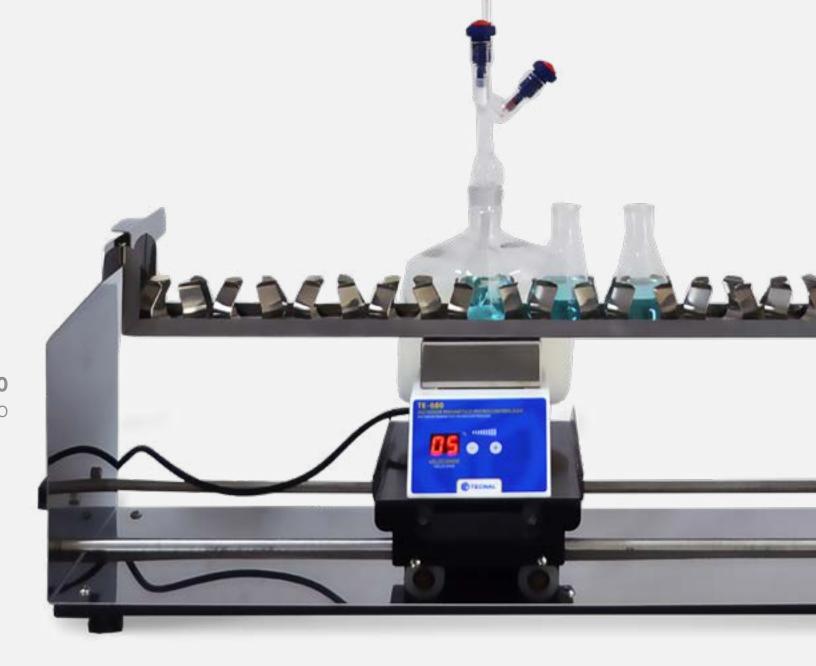
# EXTRAÇÃO DE ELEMENTOS

Utiliza-se muito os erlenmeyers e o **TECSOLO** – Pipetador automático para extração de elementos, em que a quantificação é realizada com a titulação da solução extratora após contato com o solo.

São necessários um agitador magnético, que pode ser o **TE-0854** (com aquecimento, se necessário), o **TE-080** ou o **TE-089** (sem aquecimento), uma bureta, que pode ser a **bureta digital Hirschmann** ou o **TECSOLO-200** – Ponte de titulação.

Para misturas, e em várias outras análises, utiliza-se um agitador de tubos, que pode ser o AP-56/1.




**TE-089** Agitador Magnético sem Aquecimento



**TE-080**Agitador Magnético
sem Aquecimento







**TE-0854**Agitador Magnético com Aquecimento



AP-56/1 Agitador de tubos



Devido a sua alta importância para a fertilidade do solo, saber a concentração de nitrogênio é fundamental para uma boa recomendação de adubação. Em seu método de análise, é possível utilizar o TE-040/25 - Bloco digestor tubos micro, o TE-0364 - Destilador de nitrogênio/proteína, o TE-0365/1 - Destilador de nitrogênio com três provas, ou o TE-0366 - Destilador de Nitrogênio Automático.





**TE-0366**Destilador
de nitrogênio
automático





**TE-008/50-04**Bloco digestor macro



**TE-041/25**Bloco digestor
micro com rampas
e patamares

Há também a análise de sílica, onde se utiliza o TE-008/50-04Bloco digestor tubos macro.

A Tecnal conta com o bloco digestor **TE-041/25**, que possui rampas e patamares, o que permite controle do tempo que a amostra deve permanecer em determinada temperatura, proporcionando mais praticidade.

Para digestão, pode ser utilizado o micro-ondas Xpert, utilizado para digestão de solo, tecido vegetal e fertilizante, sendo uma opção mais rápida.

**BER-XPERT**Digestor de amostras
por micro-ondas



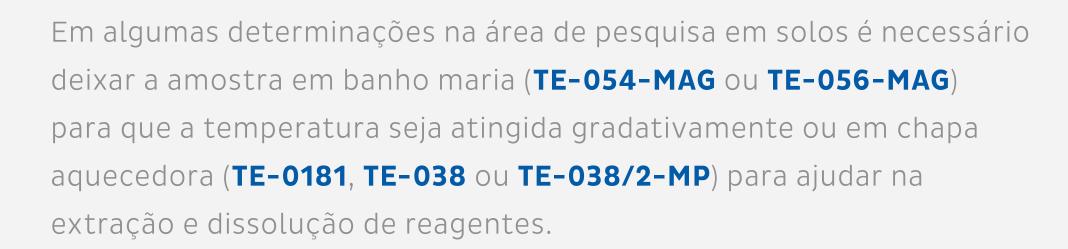


**TE-038**Chapa aquecedora



**TE-0181** Chapa aquecedora




**TE-038/2-MP**Chapa aquecedora



**TE-054-MAG**Banho-maria com
circulação de água



**TE-056-MAG**Banho-maria digital



Isso, além da necessidade do uso de **centrífuga** para separação do sobrenadante e da parte sólida.

Outro equipamento que pode ser utilizado para extração de cátions solúveis em extratos aquosos de solo ou para se obter a extração de saturação do solo é o **TE-0593**.

Após o término das análises utilizando erlenmeyers, para melhor lavagem das vidrarias, pode-se utilizar o **TECSOLO-110**.







**TECSOLO-110**Lavador de vidrarias

Para determinação e quantificação dos micronutrientes e contaminantes pode-se utilizar um Espectrofotômetro de Absorção Atômica (EAA), o GBC SavantAA ou o GBC XplorAA que utilizam lâmpadas de cátodo oco que emitem comprimento de onda dos elementos a serem determinados.

Dentre as técnicas utilizadas para quantificação em laboratórios de solo esse equipamento é muito sensível, rápido e preciso. Há também a possibilidade da utilização de Espectrofotômetro de emissão óptica por plasma indutivamente acoplado (ICP-OES), que é mais sensível que o EAA e realiza análises multielementares.

Para quantificação de elementos pode-se utilizar o Fotômetro de chama, como o modelo 910-M.





**GBC-SAVANTAA** Espectrofotômetro de absorção atômica



Fotômetro de chama







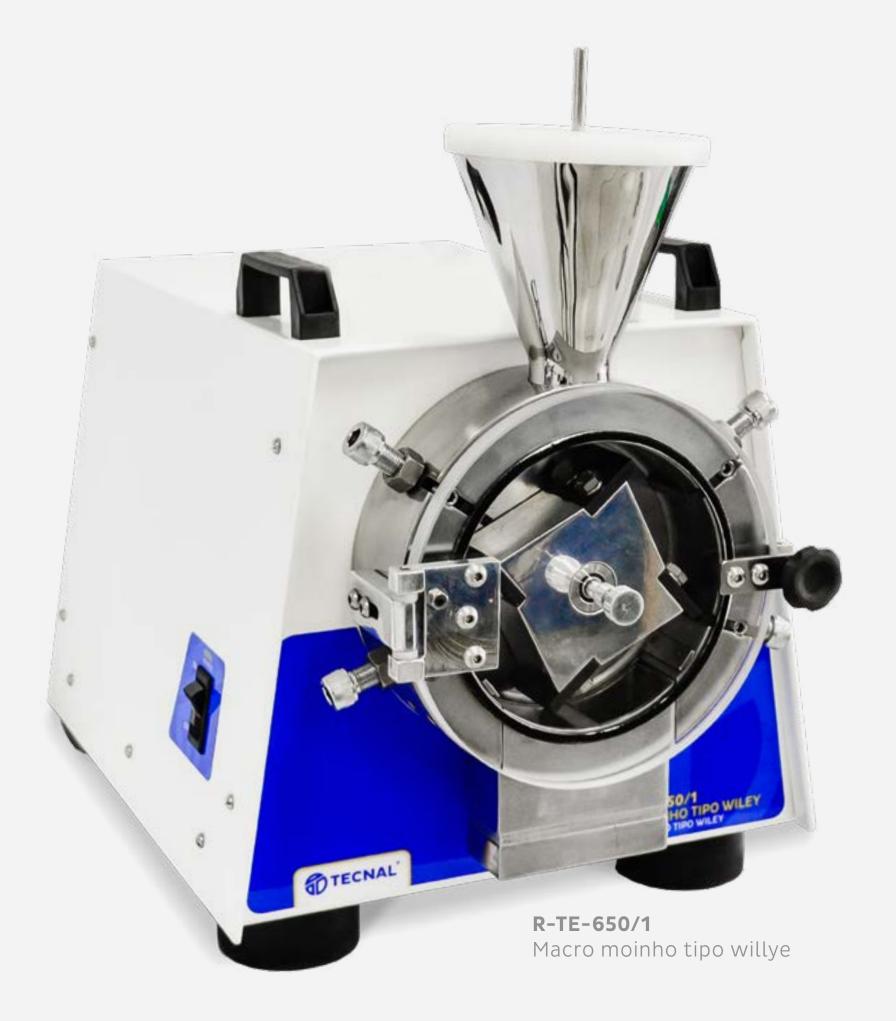
Para determinações nas quais a metodologia é colorimétrica utiliza-se um espectrofotômetro UV-VIS, como o **Digital UV-5000**. Esse equipamento pode ser associado a um **TE-034/2** – Fluxo contínuo para facilitar e agilizar a leitura das amostras.










**B-AGIT**Agitador
eletromagnético

Além das análises químicas existem as análises físicas do solo, em que são utilizados alguns outros equipamentos, como um agitador magnético de peneiras (**B-AGIT**) para se separar as diferentes granulometrias do solo, um agitador rotativo para análise física de solos **TE-161** ou **TE-161/2** e um agitador vertical de proveta **TE-167**, voltado à medição da densidade do mesmo, utilizando, por exemplo, um densímetro de boyoucos.

#### FOLIAR

O primeiro aspecto importante quanto à amostragem de tecido vegetal para análise química é que se a amostra coletada não for representativa da população analisada todo o restante do programa estará comprometido. A coleta das amostras deve ser atribuída exclusivamente a pessoas bem treinadas.

O tempo entre a coleta das amostras e a chegada ao laboratório é muito importante, pois as folhas continuam o processo respiratório depois de colhidas. No laboratório, as amostras são identificadas e higienizadas e qualquer material biológico ou orgânico presente na folha é eliminado.



As amostras são submetidas à estufa com temperatura controlada entre 65º C e 70º C para secagem até peso constante. É possível utilizar estufas com circulação de ar forçada, como a TE-394/5 de 1.516 litros.

A secagem é necessária para interromper as reações enzimáticas responsáveis pelos processos de decomposição e para retirar água do material vegetal.

Após a secagem, as amostras são moídas em moinhos de facas de aço inoxidável, tipo Willey como o **R-TE-650/1**, facilitando a manipulação e assegurando sua homogeneização.

# EXTRAÇÃO

Para extração de elementos são usados método clássicos como:

- **Digestão seca**, uma das técnicas mais antigas e simples de análise de tecido vegetal, em que é utilizado **forno Mufla** para incinerar a amostra;
- **Digestão úmida**, em que a matéria orgânica do tecido vegetal é oxidada com ácidos minerais concentrados e à quente, utilizandose bloco digestor para 40 tubos (**TE-040/25** ou **TE-041/25**) ou chapa aquecedora (**TE-0181**, **TE-038** ou **TE-038/2-MP**);

- Digestão úmida em forno micro-ondas, com o tecido vegetal sendo digerido com solvente em vaso de teflon fechado, podendo utilizar o micro-ondas Xpert;
- **Solubilização**, capaz de extrair elementos químicos do tecido vegetal sem oxidação da matéria orgânica. Utiliza-se o banho-maria (TE-054-MAG ou TE-056-MAG) e o agitador magnético TE-089.



# DETERMINAÇÃO



A próxima etapa é a determinação. A escolha do método depende de disponibilidade do equipamento no laboratório, demanda de análise, limite de detecção e precisão, qualificação dos analistas e disponibilidade de recurso.

Na determinação de nitrogênio, o amônio produzido na digestão com ácido sulfúrico é destilado em meio fortemente alcalino. O amônio condensado é coletado na solução de ácido bórico e titulado com a solução de ácido clorídrico. Em seu método de análise, pode utilizar-se o TE-040/25 - Bloco digestor tubos micro, o TE-0364 - Destilador de

nitrogênio/proteína, o <u>TE-0365/1</u> – Destilador de nitrogênio com três provas ou o <u>TE-0366</u> – Destilador de Nitrogênio Automático.

Já na determinação espectrofotométrica em que compostos coloridos são formados usa-se espectrofotômetro UV-VIS, como o Digital UV-5100.

# DETERMINAÇÃO

Há o método turbidimétrico, que permite a utilização de turbidímetro **TB-2000** ou espectrofotômetro UV-VIS, como o <u>Digital UV-5100</u> juntamente com um agitador de tubos, que pode ser o <u>AP-56/1</u>.



#### REFERÊNCIAS BIBLIOGRÁFICAS

CHITOLINA, J. C. et al. Amostragem de solo para análises de fertilidade, de manejo e de contaminação. In: SILVA, F. C. Manual de análises químicas de solos, plantas e fertilizantes. Brasília, DF: Embrapa Informação Tecnológica, 2009. p.25-57.

Silva, F. C. et al. Métodos de análises químicas para avaliação da fertilidade do solo. In: SILVA, F. C. Manual de análises químicas de solos, plantas e fertilizantes. Brasília, DF: Embrapa Informação Tecnológica, 2009. p.109-189.

TECNAL. Catálogo de Produtos Tecnal. Disponível em: <a href="http://tecnal.com.br/pt/equipamentos-para-laboratorios/">http://tecnal.com.br/pt/equipamentos-para-laboratorios/</a>>. Acesso em: 26 nov 2019.



#### TRABALHANDO PELA CIÊNCIA

+55 (19) 2105-6161 contato@tecnal.com.br